Improving Software Effort Estimation Using Neuro-Fuzzy Model with SEER-SEM
نویسندگان
چکیده
Accurate software development effort estimation is a critical part of software projects. Effective development of software is based on accurate effort estimation. Although many techniques and algorithmic models have been developed and implemented by practitioners, accurate software development effort prediction is still a challenging endeavor in the field of software engineering, especially in handling uncertain and imprecise inputs and collinear characteristics. In order to address these issues, previous researchers developed and evaluated a novel soft computing framework. The aims of our research are to evaluate the prediction performance of the proposed neuro-fuzzy model with System Evaluation and Estimation of Resource Software Estimation Model (SEERSEM) in software estimation practices and to apply the proposed architecture that combines the neuro-fuzzy technique with different algorithmic models. In this paper, an approach combining the neuro-fuzzy technique and the SEER-SEM effort estimation algorithm is described. This proposed model possesses positive characteristics such as learning ability, decreased sensitivity, effective generalization, and knowledge integration for introducing the neuro-fuzzy technique. Moreover, continuous rating values and linguistic values can be inputs of the proposed model for avoiding the large estimation deviation among similar projects. The performance of the proposed model is accessed by designing and conducting evaluation with published projects and industrial data. The evaluation results indicate that estimation with our proposed neuro-fuzzy model containing SEER-SEM is improved in comparison with the estimation results that only use SEERSEM algorithm. At the same time, the results of this research also demonstrate that the general neuro-fuzzy framework can function with various algorithmic models for improving the performance of software effort estimation.
منابع مشابه
A Neuro-Fuzzy Model with SEER-SEM for Software Effort Estimation
Software effort estimation is a critical part of software engineering. Although many techniques and algorithmic models have been developed and implemented by practitioners, accurate software effort prediction is still a challenging endeavor. In order to address this issue, a novel soft computing framework was previously developed. Our study utilizes this novel framework to develop an approach c...
متن کاملType-2 Fuzzy Logic Approach To Increase The Accuracy Of Software Development Effort Estimation
predicting the effort of a successful project has been a major problem for software engineers the significance of which has led to extensive investigation in this area. One of the main objectives of software engineering society is the development of useful models to predict the costs of software product development. The absence of these activities before starting the project will lead to variou...
متن کاملHybrid Neuro-Fuzzy Systems for Software Development Effort Estimation
The major prevailing challenges for Software Projects are Software Estimations like cost estimation, effort estimation, quality estimation and risk analysis. Though there are several algorithmic cost estimation models in practice, each model has its own pros and cons for estimation. There is still a need to find a model that gives accurate estimates. This paper is an attempt to experiment diffe...
متن کاملPerformance Evaluation of Software Development Effort Estimation Using Neuro-Fuzzy Model
ne of the greatest challenges for software developers is forecasting the development effort for a software system for the last decades. The capability to provide a good estimation on software development efforts is necessitated by the project managers. Software effort estimation models divided into two main categories: algorithmic and non-algorithmic. Developers should be able to achieve practi...
متن کاملImproving the COCOMO model using a neuro-fuzzy approach
Accurate software development cost estimation is important for effective project management such as budgeting, project planning and control. So far, no model has proved to be successful at effectively and consistently predicting software development cost. A novel neuro-fuzzy Constructive Cost Model (COCOMO) is proposed for software cost estimation. This model carries some of the desirable featu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1507.06917 شماره
صفحات -
تاریخ انتشار 2010